Image Credit: Global CCS Institute

Carbon capture and storage (CCS) is one of five priority low emissions technologies in the Australian Government’s First Low Emissions Technology Statement, because its widespread deployment will underpin new low emissions industries (including hydrogen) and provide a potential decarbonisation pathway for hard-to-abate industries.

CCS has been in commercial operation around the world for decades, in a wide variety of applications including power generation, industry and hydrogen production.

According to most recent data from the Global CCS Institute, there are now 58 CCS facilities in various stages of development globally. These include 20 in operation, three under construction, and 35 in various stages of development with an estimated combined capture capacity of 127 million tonnes of CO2 per annum.

The International Energy Agency (IEA) emphasises carbon capture as a key technology for emission reductions and estimates that roughly 2,000 CCS facilities are necessary by 2050, to limit global warming. An interactive map of CCS facilities around the globe can be found via the Global CCS Institute, here.

Among the facilities featured is one off the northwest coast of Western Australia. Here lies the Gorgon natural gas facility and the site of the largest dedicated geological storage CCS facility in the world. The Project is not yet at full capacity but plans to inject and permanently store between 3.4 and 4 million tonnes of CO2 each year. This will reduce greenhouse gas emissions from the Gorgon Project by approximately 40 percent.

In February this year, the Gorgon Project passed the milestone of successfully capturing and storing one million tonnes of CO2 since commencing operations.

The Snøhvit CO2 Storage facilities is in the Barents Sea, offshore from Norway. The CO2 is captured at an LNG facility on the island of Melkøya, northern Norway and transported via pipeline back to the Snøhvit field offshore where it is injected into an offshore storage reservoir. The facility is designed to capture 0.7 million tonnes per year of CO2 and more than 4 million tonnes of CO2 has been stored to date since 2008.

Closer to home in Victoria, the CO2CRC Otway Project has been operating for over 15 years and has injected over 80,000 tonnes of CO2 as a demonstration site. It conducts extensive research internationally and in Australia to develop and improve processes, reduce uncertainty and decrease the cost of CCS. Research at the Otway site also feeds into the CarbonNet project. The commercial phase of the Hydrogen Energy Supply Chain (HESC) project requires a CCS solution, which is what the CarbonNet project provides.

Sources:
The Global CCS Institute
The Global CCS Institute database at co2re.co 
Chevron Australia
CO2CRC